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Entangled photon sources based on semiconductor quantum dots: The role of pure dephasing
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We theoretically investigate the production of polarization-entangled photons through the biexciton cascade
decay in a single semiconductor quantum dot. To accomplish a high degree of entanglement, despite the
exciton fine-structure splitting, one must either energetically align the two exciton states by means of external
fields or erase the which-path information by postselection or time reordering of photons. Here we show that
in the latter schemes the photon state becomes deteriorated through dephasing processes in the solid, and the

degree of entanglement remains low.
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I. INTRODUCTION

Conventional optics uses lenses and filters in order to ma-
nipulate light. The same elements are used for the manipula-
tion of single or entangled photons.!?> Indeed, in most cases
of interest the working principle of passive optical elements
is identical at the classical and quantum level, but there are
situations were things are more cumbersome. Spectral filter-
ing at the single-photon level, for instance, affects the photon
wave packet and therefore modifies the quantum state of the
photon. This has important consequences for the creation of
entangled-photon pairs in single semiconductor quantum
dots,? which has recently been demonstrated*> and plays a
key role in quantum information applications.®’

In semiconductor quantum dots electrons and holes can be
trapped to form excitonic complexes, which consecutively
decay through photon emission. Because of Coulomb corre-
lation effects, the excitonic states usually have different en-
ergies and thus can be discriminated in optical experiments.?
Quantum-dot based photon devices generally use the last or
last two photons emitted in such a cascade decay.>*!? The
last photon originates from the decay of the exciton, consist-
ing of one electron and hole in the respective lowest unoc-
cupied state, and the last but one photon from the decay of
the biexciton state, consisting of two excitons with opposite
spin orientations. The ambiguity of the biexciton decay,
through either of the two ideally spin-degenerate exciton
states, translates to a polarization entanglement of the emit-
ted photons, which has been measured recently.*>

The degree of entanglement is largely diminished by the
electron-hole exchange interaction,'! which splits the ener-
gies of the intermediate exciton states by a small amount and
attaches a which-path information to the photon frequencies.
Several experimental implementations and proposals exist
for overcoming this deficiency. First, the states can be
brought back to degeneracy by means of external
magnetic>'>!3 or electric'# fields, as well as through cavity
modes with sufficiently strong coupling to both exciton and
biexciton transitions.'> Alternatively, spectral filtering can be
used to postselect only those photons whose energy contains
no which-path information.* Finally, motivated by experi-
mental observations of quantum dots with a vanishing biex-
citon binding energy, it has been proposed to entangle pho-
tons produced in different generations of the decay
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process.'®!” As we will show in this paper, only the first
protocol provides a viable means for reaching a high degree
of entanglement. The other two inherently suffer from
dephasing processes in the solid, which are always signifi-
cant, and the degree of entanglement will consequently re-
main rather low, thus limiting the performance of entangled-
photon devices.!®!” Our results suggest that protocols for
solid-state based quantum cryptography are more strict than
previously thought.

In this paper we provide analytical results for the degree
of entanglement of photons generated in the biexciton cas-
cade decay in semiconductor quantum dots. We compare the
different protocols based on spectral alignment of the inter-
mediate exciton state, postselection through spectral filtering,
and time reordering of photons produced in different genera-
tions. Our paper has been organized as follows. In Sec. II we
introduce our theoretical model and show how to compute
the two-photon density matrix by means of the quantum re-
gression theorem. Section III presents the results obtained for
the different protocols and for realistic quantum dot param-
eters. Finally, in Sec. IV we draw some conclusions.

II. THEORY
A. Quantum state tomography

In our theoretical approach, we consider the quantum dot
level scheme depicted in Fig. 1(a), consisting of the biexci-
ton state u, the two exciton states with polarizations along x
and y, and the ground state g. By optical pumping*>'? or
electrical injection of carriers»?’ the system is initially pre-
pared in the biexciton state u. Thereafter it decays radiatively
in a cascade process by emitting two photons. Because of the
biexciton binding A, typically of the order of a few meV, the
two photons have different energies and can be spectrally
discriminated. We shall refer to the photons from the biexci-
ton and exciton decays as red and blue, respectively. If the
intermediate exciton states are degenerate, the two decay
paths are indistinguishable and the photons become en-
tangled in polarization.® Such ideal performance is spoiled
by the electron-hole exchange splitting,'! as indicated in Fig.
1. To quantify the degree of entanglement, one usually per-
forms a quantum state tomography*> by measuring the cor-
relation between the two photons with a selected polarization
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FIG. 1. (Color online) (a) Level scheme consisting of biexciton
state u, exciton states polarized along x and y, and ground state g.
The biexciton energy is reduced by the biexciton binding A and the
exciton states are energetically separated by the fine-structure split-
ting . H and V denote the polarizations of the emitted photons. (b)
Schematic of creation of entangled photons. The biexciton first de-
cays by emitting a photon with polarization H or V, leaving behind
a single exciton x or y in the dot, which decays in a second step.
The ambiguity of the biexciton decay, through either of the two
ideally spin-degenerate exciton states, translates to an entanglement
of the emitted photons (Ref. 3). Because of the fine-structure split-
ting, the degree of entanglement is largely diminished. Several ex-
perimental implementations and proposals exist for overcoming this
deficiency: (c) the states can be brought back to degeneracy by
means of external fields (Ref. 5), (d) spectral filtering can be used to
postselect only those photons whose energy contains no which-path
information (Ref. 4), with h(w) being the filter function, or (e)
photons of different generations of the cascade can be entangled by
bringing the biexciton transition in resonance with the exciton one
(Refs. 16 and 17).

combination and averaging over the photon arrival times.
This procedure provides us with the two-photon density
matrix, 222

p@ = ave[(:1(1,)1(1,):)], (1)

which depends on the photon intensities f(t) of the first pho-
ton at time ¢, and the second photon at time 7,. The elements
of p(Z)’

PNy = VELER (1)E (ES, (1)E, (1)), (2)

then allow a complete reconstruction of the two-photon state.
N\ and w denote the horizontal and vertical photon polariza-

tions H and V, respectively. é;f is the electric-field operator
for polarization N\ and for a positive or negative frequency
component.”’ A schematic picture of this procedure is de-
picted in Fig. 2(a) for the diagonal elements of the two-
photon density matrix and in Fig. 2(b) for the off-diagonal
elements.

For the biexciton cascade decay shown in Fig. 1 and in
absence of exciton spin scatterings,*> the only nonzero ele-
ments of the two-photon density matrix are ng,HH and

Pg}q,vv and those obtained by interchanging H with V. The
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FIG. 2. (Color online) Schematic of relation between quantum
dot cascade decay and two-photon density matrix. (a) Diagonal el-
ement of the two-photon density matrix pﬁH’HH resulting from the
decay of the biexciton u into the x polarized exciton and subse-
quently into the ground state g. The dipole operators d mediate the
electric-field amplitudes E, as described by Eq. (4). We have indi-
cated the states involved in the dipole transition rather than the
polarization and color associated with the emitted photon. Wiggled
lines indicate emitted photons, with polarization H or V depending
on the orientation. Two electric-field amplitudes build up a photon
intensity Iy at the detector (half circles). The two-photon density
matrix is the correlation between measurements at the two detec-
tors, as described in Eq. (1). The diagonal element pg,){,HH is the
result of averaging over the arrival times of the intensity /gy of the
first (red) and second (blue) photons. (b) Off-diagonal element of
the two-photon density matrix pg;,’vv resulting from the decay of
the biexciton u into a superposition of the x and y excitons. (c)
Pg;{,vv with a filter modifying the electric-field amplitudes arriving
at the detectors, according to Eq. (6). (d) Time reordering by delay-
ing the first generation of photons by a constant time, indicated by
the thick black line between mirrors.

entanglement of formation or concurrence,?? which provides
a quantitative measure of the entanglement of the two emit-
ted photons, is then given by the ratio of the off-diagonal and
diagonal elements of p® as

(2)
PHH. VvV

2
p;II)LI,HH

C= (3)

The concurrence is one for perfect entanglement and zero in
case of no entanglement.

1. Unfiltered case

To establish a relation between the electric-field operators

E* and the quantum dot dynamics, we employ dyadic
Green’s function G of classical Maxwell theory, which gives
the field distribution for a localized current source. Let us
consider the unfiltered case first. The expression’*

E3 (14 tgeray) = Gy (1) )

then connects the electric field with the dipole operator c?;f(t)
of the excitonic transitions in the quantum dot. k is the wave
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number of the emitted photon in vacuum. For linear and
nonabsorbing materials, as is the case for semiconductor mi-
crocavities or photonic crystals, Eq. (4) holds both as a clas-
sical and an operator equation (see Refs. 25 and 26 for de-
tails). We have assumed that the photons are emitted with a
well-defined polarization \ along the growth direction, as is
the case for quantum dots placed inside a microcavity.!0
The main effect of Green’s function is to introduce a time
delay 741,y between the photon emission and its detection.
We can now relate the photon-photon correlation function in
Eq. (2) to a dipole-dipole correlation function,

Gu gy, = (. 1)y (), (1) (1), (5)

where the dipole operators cAli describe transitions between
different exciton states, associated with creation or destruc-
tion of a photon field with given polarization \ and color c.
For simplicity, we have not indicated the constant time delay
I4elay DEtween photon emission and detection. To arrive at the
two-photon density matrix of Eq. (2), we have to multiply G
with Green’s functions of Maxwell’s theory, which describe
the propagation of the photon fields from the dot to the pho-
ton detector, and to integrate over the photon detection times
t, and t,. Note that the multiplication of G with Green’s func-
tions G results in a mere constant, which drops out when
calculating the two-photon density matrix or concurrence,
owing to the normalization condition trf p®]=1. We assume
photon detection with unit efficiency throughout, although
our approach could be easily generalized to the case of lower
detector efficiencies.

2. Filtered case

In the filtered case, the electric field is obtained from the
expression

E;(t+tdelay)=f h(t - DK*Gd}(7dr, (6)
0

with & being the filter function. The upper integration limit
has been set to ¢ in order to guarantee causality. Upon Fou-
rier transformation, the convolution becomes the familiar

product h(w)c};(w) of filter function and signal source. The
terms under the integral describe how the photon wave
packet, created through excitonic decay, propagates away
from the dot and becomes modulated by the filter [see Fig.
2(c)]. Due to the filter process, where the frequency informa-
tion is extracted from the temporal field evolution, p® is
determined by a correlation function, similar to Eq. (5), but
now with all four dipole operators acting at different times,

tr
g)‘r)‘b”“‘w“'b = f h*(tr - Tr)dTrf

0 0

Iy
h(t, — 7,)dT,

Ty Iy
Xf h(t, - T;))dT;,f h(t,— 7.)dT.
0 0

XAy (r)dy (m)d!, ()7, (7). (D)

For a broadband filter, whose spectral width is large in com-

PHYSICAL REVIEW B 78, 195410 (2008)

parison to the excitonic linewidth, the filter function becomes
deltalike in time, and one recovers the dipole correlation
function (5) of the unfiltered case. On the other hand, for a
narrow-band filter the integrals extend over a considerable
time interval of the emission process.

B. Quantum dot dynamics

Next we show how to compute the dipole correlation
function of Egs. (5) and (7). The quantum dot dynamics is
described as an open quantum system interacting with the
environment. The free propagation of the quantum-dot states
is governed by the Hamiltonian,

H= 2 Ei)Xi]|+E,|u)u

i=x,y

. (8)

with i denoting the two different exciton states x and y with
energies E, and E|, respectively, and u as the biexciton state
with energy E,. Interaction with the environment results in
transitions between the different quantum dot states and
dephasing. We consider radiative decay and pure dephasing,
which are expected to be the main scattering channels for
excitons in quantum dots. Pure dephasing is due to phonon
couplings?’ and spectral diffusion due to charging centers in
the vicinity of the dot. Other scattering channels, such as
cross dephasing'3?® or exciton spin scatterings, are usually of
minor importance and will be discussed at the end. We use
the most simple description of radiative decay and pure
dephasing in terms of scattering and dephasing rates vy, and
v, respectively. This will allow us to calculate the elements
of p@ analytically. Our rate equation approach is valid under
the same conditions as the Born-Markovian approximation,
namely, that the memory kernel describing the buildup of
scatterings is sufficiently short in comparison to the scatter-
ing times. For phonon dephasing, which is expected to be the
slowest process, the memory kernel is of the order of a few
picoseconds®*3! and thus much shorter than the dephasing
time ;' of several tens to hundreds of picoseconds. Quite
generally, it is known that phonon dephasing cannot be fully
described by a simple dephasing rate, and the line shape of
excitonic transitions consists of a non-Lorentzian phonon
background and a zero-phonon line.?”-3* The dephasing rate
v, of our work mimics the averaged decay characteristics, as
will be further discussed below. We employ a master-
equation approach of Lindblad form,3?

ip=[H,p] - 52 (LLLup+ PLLL, —2L,pLY),  (9)
M

where p is the density operator of the quantum dot states and

the Lindblad operators i# describe the various scattering
channels listed in Table I. For the Lindblad operator associ-
ated with radiative decay, the last term in the parentheses of
Eq. (9) corresponds to the excitonic decay process, within
which a photon is emitted from the dot.

Introducing the short-hand notation £p for the right-hand
side of Eq. (9), where L is the Liouville superoperator,” we
can write in the spirit of the quantum jump approach®? the
formal solution of the master equation in the form
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TABLE 1. List of Lindblad operators used in our calculations. 7,
and 7y, denote the radiative and dephasing rates, respectively. We
assume that the biexciton rates are two times larger than the exciton
ones, which is a reasonable approximation for both radiative decay
and pure dephasing (Ref. 31). The operators for cross dephasing
(Refs. 13 and 28) and exciton spin scatterings are given in the last
two lines for completeness but are not considered in the calculations
given in Sec. II [except for Eq. (12)]. i labels the two exciton states
x and y.

Description Lindblad operator Considered
Radiative exciton decay Vy, 0¥l Yes
Radiative biexciton decay V2,]iXu| Yes
Exciton dephasing Vya(l G+ ) Yes
Biexciton dephasing V2 u)ul Yes
Cross dephasing i liil No
Exciton spin scattering Vo), V)| No

ﬁ(l) = e_l/:tﬁ() = {(e_lﬁt)no em T (e_lﬁt)em}ﬁO’ (10)
with py being the initial density operator. On the right-hand
side of Eq. (10) we have split the time evolution into two
contributions, the first one associated with no photon emis-
sion, which does not change the number of excitons, and the
second one associated with photon emission, which changes
the number of excitons. It will turn out that only the first part
is needed in the calculation of the dipole correlation function
(5), which will allow us to considerably simplify our analy-
sis.

We next briefly discuss how to compute multitime corre-

lation functions of the form (A,(#)As(t,)...), such as the

dipole-dipole correlation function, where A is an arbitrary
operator. This is conveniently accomplished by the quantum
regression theorem,*'3* which allows us to express
multitime-correlation functions in terms of single-time ex-
pectations. It implies that the fluctuations regress in time like
the macroscopic averages and holds exactly for systems ini-
tially decoupled from the environment and subject to a Mar-

Ppg= (€0 emlPXd]

1)
1 exp(— i—t— Mr)
2 2
S Yot )
—t—-t
exp<12 5

. tot )
_ét Dot ‘
exp( i

exp(— yrl)

explidt — (y, + y)t]

o 3
exp[— i(A - —)t— ﬁt}
2 2

2

exp(— iA1= i)

o
exp(i—t— ht)

exp[—idt — (v, + y)t]

exp(= ¥1)

S 3
exp[— i<A + —)t— L‘)tt}
2 2
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kovian dynamics. Both approximations are valid for the de-
scription of the photon cascade decay in a quantum dot. For
the initial decoupling it suffices to assume that the system
will pass, at some point of the cascade, through the biexciton
state, which consecutively decays through photon emissions.
The applicability of the Markovian approximation has been
justified before in Sec. II B. According to the quantum re-
gression theorem, a multitime-correlation function can be
unraveled to a sequence of time evolutions, governed by
e”*' which are interrupted by abrupt transitions at times
t;<t,<... according to**

(A (1)AN(1).. Y =ti... Aye E) A e g 0], (11)

Here Ap is a short-hand notation for Aﬁ if A is an operator
evolving with positive frequency such as d* and for ﬁA if A

is an operator evolving with negative frequency such as d.

There is a subtle point regarding the use of the quantum
regression theorem for the calculation of the dipole correla-
tion function of Egs. (5) and (7) in case of a biexciton cas-
cade, where the system is initially in the biexciton state p

=|u)u|. According to Eq. (11), the dipole operators d* act
from either the left- or right-hand side on the time propa-
gated pg, each of them creating a photon field. As we can
create at most two-photon fields from either side of py, it
immediately follows that we have to consider in the time
evolutions in Eq. (11) only that part of e™*' associated with
no photon emission.** The remainder corresponds to terms
where more than four photon fields are involved, which are
automatically zero in case of a pure cascade decay.

All Lindblad operators considered in our calculations (see
Table I) either correspond to pure dephasing, which does not
mix the different excitonic states, or to radiative decay. Thus,
if the system is initially in the state |p)(g|, with p and ¢
labeling the quantum dot states g, x, y, and u, the conditional
time evolution (¢7'%%) .., does not couple to any other state.
From the master equation [Eq. (9)] we then obtain for the
conditional time evolution within the usual rotating wave
approximation,

exp(iAr = Ygil)

s\ 3
exp[i(A - —)t— ﬂt:|

2 2

5\ 3 ’
exp{i(A + —)t— ﬂt}

2 2

exp(=2y,1)

2 2

rq

(12)
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where vy,,=7v,+7; is the sum of radiative and dephasing
rates, & is the fine-structure splitting, and A is the biexciton
binding energy. The components of the conditional density
matrix have one part associated with the free time evolution

due to H and another part associated with scatterings. The
imaginary parts of the arguments of the exponentials are due
to the different energies of the excitonic states and the real
parts due to scattering processes. Pure dephasing only affects
those elements p,, which have an unequal number of exci-
tons in p and g. We have included cross dephasing'®?® vy, in
Eq. (12), which affects the elements p,, and p,,. This dephas-
ing mechanism will not be explicitly considered in our fol-
lowing calculations but will be addressed in our final discus-
sion.

III. RESULTS
A. Unfiltered case

We now have all ingredients at hand to compute the ele-
ments of the two-photon density matrix. Let us consider the
unfiltered case first. Following the prescription of the quan-
tum regression theorem [Eq. (11)], the correlation function is
unraveled to a sequence of conditional density matrices
Puu— Pru— Pgg» Which evolve under the condition that the
system undergoes abrupt transitions, determined by the se-
quence of dipole operators, at times ¢, and t,. From the ele-
ments of the conditional density matrix of Eq. (12), we get
for the diagonal and off-diagonal elements of the dipole-
dipole correlation function

Grapr = Ne™2tre™ 1),

gHH, = Ne—Zy,t,e—y,(z,,—t,)—ié{tb—t,) , (13)

where N is a normalization constant that includes dipole
moments of different excitonic transitions. The entanglement
of formation or concurrence [Eq. (3)] is obtained by averag-
ing in Eq. (13) over the photon arrival times 7, and ¢,,

Yr
V. +1i6

. (14)

It has its maximum for zero fine-structure splitting and de-
creases with increasing &, as shown in Fig. 3. This is because
of the different phases acquired in the evolution of the inter-
mediate exciton state and the time average over the resulting
phase factors.

B. Filtered case

The calculation of the two-photon density matrix in case
of filtering is very similar but more cumbersome. We again
employ the quantum regression theorem for its calculation,
but we now obtain conditional density-matrix elements p,,,
with unequal number of excitons, whose time evolutions are
affected by pure dephasing. To simplify our analysis, we
assume that the filter function 4(w) has a Lorentzian shape,®
with a central frequency positioned in the middle of the two
fine-structure-split emission peaks and width dw. Within this
approach we can perform all integrals analytically. In the
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FIG. 3. (Color online) (a) Concurrence as a function of fine-
structure splitting and for different dephasing rates, as computed
from the expressions given in Table II. The solid line corresponds to
the unfiltered case. The dashed (dotted) lines report results for
Sw=1 peV (10 weV) which are plotted for positive (negative)
fine-structure splittings only. We use a radiative decay rate of
v,=1.6 ueV which corresponds to a lifetime of about 1 ns. (b)
Concurrence as a function of filter width dw and for 6=10 ueV. In
presence of dephasing the concurrence remains low despite filter-
ing. The insets report density maps of the concurrence as a function
of filter width and dephasing rate.

evaluation of the dipole correlation function (7) we have to
consider all possible time orderings for 7, subject to the con-
ditions 7,= 7, and 7, =7, which are a direct consequence of
the cascade nature of the biexciton decay. Table II provides
details about the resulting six time orderings and lists the
resulting diagonal and off-diagonal elements of the two-
photon density matrix (see also Fig. 2).

Two limiting cases can be readily obtained from the ele-
ments of the filtered two-photon correlation function. First,
for dw— o0 the concurrence reduces to that of the unfiltered
case. Second, for zero fine-structure splitting the concurrence
becomes one. This perfect entanglement is due to the ab-
sence of any which-path information in the photon frequen-
cies. In the general case, the concurrence depends on the
quantum dot parameters &, y,, and 7y, as well as on the filter
width dw. Results for typical quantum dot and filter param-
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TABLE II. Elements of the two-photon density matrix and details of their calculation by means of the quantum regression theorem (Refs.
21 and 34). In absence of exciton spin scatterings, the only nonzero elements are pg,)i yp and pg,)“,v and those obtained by interchanging H
and V. The concurrence (Ref. 23) is given by the modulus of the ratio between the off-diagonal and diagonal elements (Refs. 4 and 5). The
correlation function is unraveled to a sequence of conditional density matrices, which evolve under the condition that the system undergoes
abrupt transitions. Note that p® is not properly normalized in case of filtering due to the loss of photons. In the entanglement of photons in
different generations (Refs. 16 and 17), we assume that the photons originating from the biexciton decay are delayed by some time 7). We
use Y= 7Y,+ 7, and c.c. for the complex conjugate of the preceding term.

Time order

2

Figure Basis A Decay path P
1
1(a) HH O=r=y, puu(tr)_’pxx(tb_tr)_’pgg 5
HV OSIrStb puu(tr)*)va([b_tr)*’p li
i 88 2 y,+id
l(d) HH*? 0= rS 7;5 TbS T; puu(Tr)*)pxu(T;_Tr)*)pxx('rb_T;)Hpgx(TL_Tb)‘)pgg
O=m=r=n=m, (7)) = pux(T,= 7)) = Pl 7= 7,) = poi(7,— 7)) —
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(60)° Y ( 2 ! )
+
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1
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thy=t,=<t,

puu(th_ lO) - puy(tr_ lh) - pxy([b_tr"' lO) - pxg([r_[h) — Pgg

» :’zy (e—%’()_e_zytotlo)
r d

Other decay paths are obtained through 7+ 7" and p,,— p,,. For the off-diagonal elements one has to additionally replace x <« y.

eters are shown in Fig. 3. Panel (a) reports that in the filtered
case the degree of entanglement first drops with increasing &
and then increases again for larger values of 6. This is due to
the competition between the opposite trends of increase in
which-path information with increasing & and the masking of
which-path information through the filter. The latter process
is of importance when the two lines become energetically
separated, but it comes at the price of a strongly reduced
efficiency since in this regime practically all photons are ab-
sorbed by the filter. From the figure we observe that the
concurrence dramatically drops in presence of dephasing.
This is also evident from panel (b) which reports the influ-
ence of the filter width on the concurrence. For finite values
of 7y, the degree of entanglement remains low despite filter-
ing. This is due to the transition of the pure entangled-photon
state to a mixed classically correlated photon state, which
takes place in the process of filtering.

The precise value of the dephasing rate depends on the
detailed quantum dot parameters and on the coupling of the
excitons to the solid-state environment. The linewidth of ap-
proximately 50 ueV measured in experiment®> provides a
hypothetical upper limit. This value is certainly too high, as
it includes spectral diffusion which occurs on longer time
scales due to fluctuating environment fields. These fluctua-
tions affect the energies of the excitonic states but are not

expected to have a drastic impact on the entanglement prop-
erties. For a lower bound of y,; we estimate a dephasing time
of 340 ps, corresponding to a rate of approximately 5 ueV,
which was obtained in single-photon interferometer
measurements.'31%3 It is apparent from Fig. 3 that for such
values of vy, the concurrence is already restricted to small
values.

Quite generally, phonon-assisted dephasing is known to
result in a fast polarization decay on the picosecond time
scale, associated with the emission of a phonon wave packet
away from the dot,3! which is followed by a slower decay
due to anharmonic phonon interactions and other environ-
ment couplings.?’** Such polarization decay could be ac-
counted for by replacing the monoexponential decay in Eq.
(12) with a more realistic decay law. However, in this paper
we have given precedence to the most simple rate equation
approach for two reasons. First, it allows us to derive ana-
lytic results and suffices to understand why dephasing is in-
nocent in case of pure photon counting but affects the degree
of entanglement when the photon fields are delayed, as is the
case for filtering. Second, the rate vy, extracted from single-
photon experiments'!? precisely accounts for the averaged
effect of dephasing losses and thus provides a meaningful
estimate also for entangled-photon generation.
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C. Time reordering

Dephasing also plays an important role for entanglement
of photons created in different generations of the biexciton
cascade [see Fig. 1(e)], which has recently been proposed for
quantum dots with a vanishing biexciton binding energy.'®!”
Using the notation of Fig. 1(e), within this approach one
entangles the red photon fields H, and V, with the blue pho-
ton fields H, and V. This is accomplished by delaying the
fields H, and V, originating from the biexciton decay by a
constant time %, [see Fig. 2(d)]. The elements of the dipole-
dipole correlation function then read

Grarg.n = (dyy (1, 1)y (1) (1))dy (1.~ 10)),

Gunvv = <C};1r(l‘r - to)a;ih(tb)a;h(tb - fo)(};r/r(fr)f (15)

Table II provides the results for the elements of the two-
photon density matrix, which are obtained by evaluating Eq.
(15) by means of the quantum regression theorem and aver-
aging over the photon arrival times. Note that in this scheme
the fine-structure splitting & plays a different role than in the
previous schemes, as it is used to distinguish the red from the
blue photons. Employing again the rotating wave approxima-
tion, we consider this by setting & equal to zero in the con-
ditional density matrices [Eq. (12)]. In experiments, & should
be sufficiently large in order to allow for an efficient filtering
of the different photon colors. However, even in the case
where filtering of the red and blue photon has no effect on
the photon wave packet, as assumed in the results given in
the table, the time jitter of the photon emissions and dephas-
ing significantly reduce the overall concurrence. Remarkably,
even in absence of any dephasing the two-photon wave pack-
ets emitted in the cascade decay do not overlap completely,
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for any time delay ¢, and the concurrence is bound to values
below one-half.

IV. CONCLUSIONS

The radiative biexciton cascade decay in single semicon-
ductor quantum dots has the potential of being a source of
triggered polarization-entangled-photon pairs. Whether de-
vices based on this mechanism will prove successful for
quantum information applications depends on a number of
issues. A high collection efficiency of photons through the
microcavity is crucial. In single-photon devices radiative
scattering enhancements by a factor of 10 or more have been
demonstrated,'®!° but things are more difficult in entangled-
photon sources due to the different photon colors. From a
more fundamental perspective, the issue of exciton fine-
structure splitting, which is a consequence of the general
quantum principle of level repulsion, has to be addressed
properly. As we have shown here, through filtering* or en-
tanglement of photons produced in different generations!®-!7
the degree of entanglement becomes affected through
dephasing losses. Such losses limit the device performance
already at low temperatures but make entanglement genera-
tion probably impossible at elevated temperatures. In con-
trast, in the unfiltered case dephasing is a much less critical
issue, with cross dephasing constituting the major cause of
entanglement loss,'»?® and the devices could operate at
higher temperatures.®” So far, experiments performed by
spectrally aligning the exciton states have given a photon
entanglement with a concurrence significantly below the
maximum value of one,*!*37 and further work is needed to
pinpoint the reasons for this entanglement degradation. Nev-
ertheless, the results of our analysis suggest that the tfour de
force approach of reducing the fine-structure splitting, by
means of growth optimization or external fields, is the most
promising one for reaching a high degree of photon entangle-
ment.
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